Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

ZnO films grown using a novel procedure based on the reactive evaporation method

Identifieur interne : 001253 ( Main/Repository ); précédent : 001252; suivant : 001254

ZnO films grown using a novel procedure based on the reactive evaporation method

Auteurs : RBID : Pascal:12-0233681

Descripteurs français

English descriptors

Abstract

A novel procedure based on the reactive evaporation method was developed to deposit highly transparent thin films of i-ZnO and n+-ZnO in-situ. The opto-electrical properties of the ZnO films were optimized for using them as TCO layer in solar cells. The optimization of the preparation parameters was achieved through a figure of merit defined in terms of both, the transmittance and the resistivity. n+-ZnO films with resistivities around 8 × 10-4 Ω cm and i-ZnO films with resistivities around 105 Ω cm and transmittances greater than 80% (in the visible region) were obtained with this method. The applicability of the i-ZnO and n+-ZnO thin films in photovoltaic devices has been demonstrated by using them as interdiffusion barrier and TCO layer in CuInS2 based solar cells. Conversion efficiencies of 9.1% were achieved with CIS based solar cells using ZnO thin films deposited by reactive evaporation.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0233681

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">ZnO films grown using a novel procedure based on the reactive evaporation method</title>
<author>
<name sortKey="Oyola, J S" uniqKey="Oyola J">J. S. Oyola</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Departamento de Física, Universidad Nacional de Colombia</s1>
<s2>Bogotá DC</s2>
<s3>COL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Colombie</country>
<wicri:noRegion>Bogotá DC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Castro, J M" uniqKey="Castro J">J. M. Castro</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Departamento de Física, Universidad Nacional de Colombia</s1>
<s2>Bogotá DC</s2>
<s3>COL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Colombie</country>
<wicri:noRegion>Bogotá DC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gordillo, G" uniqKey="Gordillo G">G. Gordillo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Departamento de Física, Universidad Nacional de Colombia</s1>
<s2>Bogotá DC</s2>
<s3>COL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Colombie</country>
<wicri:noRegion>Bogotá DC</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0233681</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0233681 INIST</idno>
<idno type="RBID">Pascal:12-0233681</idno>
<idno type="wicri:Area/Main/Corpus">001D21</idno>
<idno type="wicri:Area/Main/Repository">001253</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Barrier layer</term>
<term>Conversion rate</term>
<term>Copper sulfide</term>
<term>Electrical characteristic</term>
<term>Electrical conductivity</term>
<term>Electrical properties</term>
<term>Figure of merit</term>
<term>In situ</term>
<term>Indium sulfide</term>
<term>Interdiffusion</term>
<term>Optimization</term>
<term>Photovoltaic cell</term>
<term>Reactive evaporation</term>
<term>Resistivity</term>
<term>Solar cell</term>
<term>Ternary compound</term>
<term>Thin film</term>
<term>Transmittance</term>
<term>Transparent thin film</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Evaporation réactive</term>
<term>Couche mince transparente</term>
<term>In situ</term>
<term>Caractéristique électrique</term>
<term>Propriété électrique</term>
<term>Optimisation</term>
<term>Cellule solaire</term>
<term>Facteur mérite</term>
<term>Facteur transmission</term>
<term>Conductivité électrique</term>
<term>Résistivité</term>
<term>Dispositif photovoltaïque</term>
<term>Diffusion mutuelle</term>
<term>Couche barrière</term>
<term>Taux conversion</term>
<term>Oxyde de zinc</term>
<term>Couche mince</term>
<term>Composé ternaire</term>
<term>Sulfure de cuivre</term>
<term>Sulfure d'indium</term>
<term>ZnO</term>
<term>CuInS2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A novel procedure based on the reactive evaporation method was developed to deposit highly transparent thin films of i-ZnO and n
<sup>+</sup>
-ZnO in-situ. The opto-electrical properties of the ZnO films were optimized for using them as TCO layer in solar cells. The optimization of the preparation parameters was achieved through a figure of merit defined in terms of both, the transmittance and the resistivity. n
<sup>+</sup>
-ZnO films with resistivities around 8 × 10
<sup>-4</sup>
Ω cm and i-ZnO films with resistivities around 10
<sup>5</sup>
Ω cm and transmittances greater than 80% (in the visible region) were obtained with this method. The applicability of the i-ZnO and n
<sup>+</sup>
-ZnO thin films in photovoltaic devices has been demonstrated by using them as interdiffusion barrier and TCO layer in CuInS
<sub>2</sub>
based solar cells. Conversion efficiencies of 9.1% were achieved with CIS based solar cells using ZnO thin films deposited by reactive evaporation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>102</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>ZnO films grown using a novel procedure based on the reactive evaporation method</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OYOLA (J. S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CASTRO (J. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GORDILLO (G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Departamento de Física, Universidad Nacional de Colombia</s1>
<s2>Bogotá DC</s2>
<s3>COL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>137-141</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000507919390210</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0233681</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A novel procedure based on the reactive evaporation method was developed to deposit highly transparent thin films of i-ZnO and n
<sup>+</sup>
-ZnO in-situ. The opto-electrical properties of the ZnO films were optimized for using them as TCO layer in solar cells. The optimization of the preparation parameters was achieved through a figure of merit defined in terms of both, the transmittance and the resistivity. n
<sup>+</sup>
-ZnO films with resistivities around 8 × 10
<sup>-4</sup>
Ω cm and i-ZnO films with resistivities around 10
<sup>5</sup>
Ω cm and transmittances greater than 80% (in the visible region) were obtained with this method. The applicability of the i-ZnO and n
<sup>+</sup>
-ZnO thin films in photovoltaic devices has been demonstrated by using them as interdiffusion barrier and TCO layer in CuInS
<sub>2</sub>
based solar cells. Conversion efficiencies of 9.1% were achieved with CIS based solar cells using ZnO thin films deposited by reactive evaporation.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Evaporation réactive</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Reactive evaporation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Evaporación reactiva</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Couche mince transparente</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Transparent thin film</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Película transparente</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>In situ</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>In situ</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>In situ</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Propriété électrique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Electrical properties</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Propiedad eléctrica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Facteur mérite</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Figure of merit</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Factor mérito</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Facteur transmission</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Transmittance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Factor transmisión</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Conductivité électrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Electrical conductivity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Conductividad eléctrica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Résistivité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Resistivity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Resistividad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Diffusion mutuelle</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Interdiffusion</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Difusión mútua</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Couche barrière</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Barrier layer</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Sulfure de cuivre</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Copper sulfide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Cobre sulfuro</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>26</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>26</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>CuInS2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>177</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001253 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001253 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0233681
   |texte=   ZnO films grown using a novel procedure based on the reactive evaporation method
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024